
GWIM Smart Contracts Technical
Specification

Overview

This document provides comprehensive technical specifications for the smart contracts
required to implement the GWIM token ecosystem on the Solana blockchain. The
specification covers four main components:

GWIM Token Contract
Presale Contract
Staking Contract
DAO Governance Contract

1. GWIM Token Contract

Contract Type

Solana Program Library (SPL) Token

Token Parameters

Name: GWIM Token
Symbol: GWIM
Total Supply: 210,000,000 tokens
Decimals: 6
Contract Address: BFF6n9ErsHUyj9MnutmmxxiXSXY1skKX9Pib8bWFgrcU

Token Distribution

Presale Allocation: 52,500,000 tokens (25%)
Team Allocation: TBD
Ecosystem Development: TBD
Marketing: TBD
Treasury: TBD

1. 
2. 
3. 
4. 

• 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 



Key Functions

Initialize Token

pub fn initialize_token(
program_id: &Pubkey,
mint_authority: &Pubkey,
freeze_authority: Option<&Pubkey>,
decimals: u8,

) -> ProgramResult

Mint Tokens

pub fnmint_to(
program_id: &Pubkey,
mint_pubkey: &Pubkey,
account_pubkey: &Pubkey,
owner_pubkey: &Pubkey,
signer_pubkeys: &[&Pubkey],
amount: u64,

) -> ProgramResult

Transfer Tokens

pub fn transfer(
program_id: &Pubkey,
source_pubkey: &Pubkey,
destination_pubkey: &Pubkey,
authority_pubkey: &Pubkey,
signer_pubkeys: &[&Pubkey],
amount: u64,

) -> ProgramResult

Security Considerations

Mint authority should be transferred to a multi-signature wallet after initial setup
Consider implementing a token timelock for team and advisor allocations
Implement proper access controls for administrative functions

• 
• 
• 



2. Presale Contract

Contract Type

Custom Solana Program

State Variables

pub struct PresaleState {
// Admin authority
pub authority: Pubkey,

// GWIM token mint address
pub token_mint: Pubkey,

// Treasury wallet to receive SOL payments
pub treasury_wallet: Pubkey,

// Presale stages configuration
pub stages: [PresaleStage; 4],

// Current active stage
pub current_stage: u8,

// Total tokens sold
pub total_tokens_sold: u64,

// Initial presale supply
pub initial_presale_supply: u64,

// Remaining presale supply
pub remaining_presale_supply: u64,

// Current token price in USD (6 decimals)
pub current_price_usd: u64,

// SOL price in USD (6 decimals)
pub sol_price_usd: u64,

// Last SOL price update timestamp
pub last_price_update: i64,

// Mapping of wallet addresses to amount purchased
pub purchases: BTreeMap<Pubkey, u64>,

// Is presale active
pub is_active: bool,

}

• 



pub struct PresaleStage {
// Stage start date (Unix timestamp)
pub start_date: i64,

// Stage end date (Unix timestamp)
pub end_date: i64,

// Initial token price for this stage (in USD, 6 decimals)
pub initial_price: u64,

// Maximum tokens to sell in this stage
pub token_cap: u64,

// Tokens sold in this stage
pub tokens_sold: u64,

// Is stage active
pub is_active: bool,

}

Key Functions

Initialize Presale

pub fn initialize_presale(
program_id: &Pubkey,
authority: &Pubkey,
token_mint: &Pubkey,
treasury_wallet: &Pubkey,
initial_presale_supply: u64,
initial_price: u64,
stage_start_dates: [i64; 4],
stage_end_dates: [i64; 4],
stage_token_caps: [u64; 4],

) -> ProgramResult

Start Presale

pub fn start_presale(
program_id: &Pubkey,
authority: &Pubkey,

) -> ProgramResult



Update SOL Price

pub fn update_sol_price(
program_id: &Pubkey,
authority: &Pubkey,
new_sol_price: u64,

) -> ProgramResult

Calculate Token Price

pub fn calculate_token_price(
program_id: &Pubkey,

) -> Result<u64, ProgramError>

Purchase Tokens

pub fn purchase_tokens(
program_id: &Pubkey,
buyer: &Pubkey,
amount: u64,
sol_payment: u64,

) -> ProgramResult

Advance Stage

pub fn advance_stage(
program_id: &Pubkey,
authority: &Pubkey,

) -> ProgramResult

End Presale

pub fn end_presale(
program_id: &Pubkey,
authority: &Pubkey,

) -> ProgramResult



Presale Rules Implementation

Dynamic Pricing Logic

fn calculate_dynamic_price(
base_price: u64,
months_since_start: u64,
initial_supply: u64,
remaining_supply: u64,

) -> u64 {
// Apply 15% monthly increase
let mut price = base_price;
for _ in 0..months_since_start {
price = price.saturating_mul(115).saturating_div(100);

}

// Calculate supply decrease percentage
let supply_decrease = if initial_supply > 0 {
let sold = initial_supply.saturating_sub(remaining_supply);
(sold as f64 / initial_supply as f64) * 100.0

} else {
0.0

};

// Apply 2% price increase for every 1% supply decrease
let supply_factor = 1.0 + (supply_decrease * 0.02);
let final_price = (price as f64 * supply_factor) as u64;

final_price
}

Purchase Limit Enforcement

fn enforce_purchase_limit(
state: &PresaleState,
buyer: &Pubkey,
amount: u64,

) -> ProgramResult {
let current_purchase = state.purchases.get(buyer).unwrap_or(&0);
let total_purchase = current_purchase.saturating_add(amount);

// During presale, limit to 100 tokens per wallet
if state.is_active && total_purchase > 100_000_000 { // 100 tokens with 6 decimals
return Err(ProgramError::InvalidArgument);

}

Ok(())
}



Security Considerations

Implement circuit breaker pattern to pause presale in case of emergency
Use secure price oracle for SOL price with fallback mechanism
Ensure proper access controls for administrative functions
Implement comprehensive input validation
Consider rate limiting to prevent flash loan attacks

3. Staking Contract

Contract Type

Custom Solana Program

State Variables

pub struct StakingState {
// Admin authority
pub authority: Pubkey,

// GWIM token mint address
pub token_mint: Pubkey,

// DAO treasury wallet to receive penalties
pub dao_treasury: Pubkey,

// Total tokens staked
pub total_staked: u64,

// Staking pools
pub pools: [StakingPool; 4],

// Mapping of staker addresses to their stakes
pub stakes: BTreeMap<Pubkey, Vec<Stake>>,

}

pub struct StakingPool {
// Duration in months
pub duration: u8,

// APY in basis points (e.g., 1000 = 10%)
pub apy: u16,

// Total tokens staked in this pool
pub total_staked: u64,

}

• 
• 
• 
• 
• 

• 



pub struct Stake {
// Staker address
pub staker: Pubkey,

// Amount staked
pub amount: u64,

// Pool index
pub pool_index: u8,

// Start timestamp
pub start_time: i64,

// End timestamp
pub end_time: i64,

// Accumulated rewards
pub rewards: u64,

// Is active
pub is_active: bool,

}

Key Functions

Initialize Staking

pub fn initialize_staking(
program_id: &Pubkey,
authority: &Pubkey,
token_mint: &Pubkey,
dao_treasury: &Pubkey,
pool_durations: [u8; 4],
pool_apys: [u16; 4],

) -> ProgramResult

Stake Tokens

pub fn stake_tokens(
program_id: &Pubkey,
staker: &Pubkey,
amount: u64,
pool_index: u8,

) -> ProgramResult



Calculate Rewards

pub fn calculate_rewards(
program_id: &Pubkey,
staker: &Pubkey,
stake_id: u64,

) -> Result<u64, ProgramError>

Claim Rewards

pub fn claim_rewards(
program_id: &Pubkey,
staker: &Pubkey,
stake_id: u64,

) -> ProgramResult

Unstake Tokens

pub fn unstake_tokens(
program_id: &Pubkey,
staker: &Pubkey,
stake_id: u64,

) -> ProgramResult

Staking Rules Implementation

APY Calculation

fn calculate_apy_rewards(
amount: u64,
apy: u16,
start_time: i64,
current_time: i64,

) -> u64 {
// Convert APY from basis points to decimal
let apy_decimal = apy as f64 / 10000.0;

// Calculate time elapsed in years
let seconds_in_year = 31536000.0; // 365 days
let time_elapsed = (current_time - start_time) as f64 / seconds_in_year;

// Calculate rewards using compound interest formula
let rewards = (amount as f64 * ((1.0 + apy_decimal).powf(time_elapsed) - 1.0)) as

u64;



rewards
}

Early Unstaking Penalty

fn apply_early_unstaking_penalty(
state: &mut StakingState,
stake: &Stake,
current_time: i64,

) -> (u64, u64) {
// Check if unstaking is early
let is_early = current_time < stake.end_time;

// Calculate amount to return and penalty
let total_amount = stake.amount.saturating_add(stake.rewards);

if is_early {
// Apply 15% penalty
let penalty_amount = stake.amount.saturating_mul(15).saturating_div(100);
let return_amount = total_amount.saturating_sub(penalty_amount);

// Transfer penalty to DAO treasury
// (implementation details omitted)

(return_amount, penalty_amount)
} else {

// No penalty for regular unstaking
(total_amount, 0)

}
}

Security Considerations

Implement reentrancy protection
Ensure proper validation of staking periods and APY rates
Use safe math operations to prevent overflow/underflow
Implement comprehensive testing for reward calculations
Consider implementing emergency unstake function with governance approval

4. DAO Governance Contract

Contract Type

Custom Solana Program

• 
• 
• 
• 
• 

• 



State Variables

pub struct DAOState {
// Admin authority (multi-sig)
pub authority: Pubkey,

// GWIM token mint address
pub token_mint: Pubkey,

// DAO treasury wallet
pub treasury: Pubkey,

// Staking contract address
pub staking_contract: Pubkey,

// Minimum tokens required to create proposal
pub proposal_threshold: u64,

// Minimum percentage of votes to pass proposal
pub quorum_percentage: u8,

// Proposals
pub proposals: BTreeMap<u64, Proposal>,

// Next proposal ID
pub next_proposal_id: u64,

}

pub struct Proposal {
// Proposal ID
pub id: u64,

// Proposer address
pub proposer: Pubkey,

// Proposal title
pub title: String,

// Proposal description
pub description: String,

// Proposal actions
pub actions: Vec<ProposalAction>,

// Votes for
pub votes_for: u64,

// Votes against
pub votes_against: u64,

// Start timestamp



pub start_time: i64,

// End timestamp
pub end_time: i64,

// Is executed
pub is_executed: bool,

// Is canceled
pub is_canceled: bool,

// Voters
pub voters: BTreeMap<Pubkey, VoteInfo>,

}

pub struct ProposalAction {
// Target program
pub target: Pubkey,

// Function to call
pub function_id: u8,

// Data to pass
pub data: Vec<u8>,

}

pub struct VoteInfo {
// Voter address
pub voter: Pubkey,

// Vote weight
pub weight: u64,

// Vote type (0 = against, 1 = for)
pub vote_type: u8,

}

Key Functions

Initialize DAO

pub fn initialize_dao(
program_id: &Pubkey,
authority: &Pubkey,
token_mint: &Pubkey,
treasury: &Pubkey,
staking_contract: &Pubkey,
proposal_threshold: u64,



quorum_percentage: u8,
) -> ProgramResult

Create Proposal

pub fn create_proposal(
program_id: &Pubkey,
proposer: &Pubkey,
title: String,
description: String,
actions: Vec<ProposalAction>,
duration: u64,

) -> ProgramResult

Cast Vote

pub fn cast_vote(
program_id: &Pubkey,
voter: &Pubkey,
proposal_id: u64,
vote_type: u8,

) -> ProgramResult

Calculate Voting Power

pub fn calculate_voting_power(
program_id: &Pubkey,
voter: &Pubkey,

) -> Result<u64, ProgramError>

Execute Proposal

pub fn execute_proposal(
program_id: &Pubkey,
authority: &Pubkey,
proposal_id: u64,

) -> ProgramResult

Cancel Proposal

pub fn cancel_proposal(
program_id: &Pubkey,
authority: &Pubkey,



proposal_id: u64,
) -> ProgramResult

DAO Rules Implementation

Voting Power Calculation

fn calculate_voting_power(
staking_contract: &Pubkey,
voter: &Pubkey,

) -> Result<u64, ProgramError> {
// Query staking contract to get staked amount
// (implementation details omitted)

// Voting power is equal to staked amount
Ok(staked_amount)

}

Proposal Execution Logic

fn execute_proposal_actions(
proposal: &Proposal,

) -> ProgramResult {
// Check if proposal passed
let total_votes = proposal.votes_for.saturating_add(proposal.votes_against);
let vote_percentage = if total_votes > 0 {
(proposal.votes_for as f64 / total_votes as f64) * 100.0

} else {
0.0

};

if vote_percentage < quorum_percentage as f64 {
return Err(ProgramError::InvalidArgument);

}

// Execute each action
for action in &proposal.actions {

// Call target program with function_id and data
// (implementation details omitted)

}

Ok(())
}



Security Considerations

Implement time-lock for proposal execution
Use multi-signature for critical DAO operations
Ensure proper validation of proposal actions
Implement comprehensive testing for voting mechanisms
Consider implementing emergency pause functionality

Implementation Guidelines

Development Framework

Recommended: Anchor Framework for Solana
Alternative: Native Solana Program Library (SPL)

Development Environment

Solana CLI tools
Rust compiler
Anchor CLI (if using Anchor)
Solana Program Library (SPL)

Testing Strategy

Unit tests for each contract function
Integration tests for contract interactions
Simulation tests for economic scenarios
Security audits before mainnet deployment

Deployment Process

Deploy contracts to Solana devnet
Verify functionality and security
Conduct thorough testing
Deploy to Solana mainnet
Initialize contracts with correct parameters
Transfer authorities to multi-sig wallets

Frontend Integration

Use @solana/web3.js for blockchain interactions
Use @solana/spl-token for token operations

• 
• 
• 
• 
• 

• 
• 

• 
• 
• 
• 

1. 
2. 
3. 
4. 

1. 
2. 
3. 
4. 
5. 
6. 

• 
• 



Implement wallet adapters for Phantom, Solflare, etc.
Replace mock implementations in the provided UI components with actual
contract calls

Conclusion

This technical specification provides a comprehensive blueprint for implementing the
GWIM token ecosystem on the Solana blockchain. The contracts are designed to work
together to create a complete tokenomics system with presale, staking, and governance
functionality.

Implementation should be carried out by experienced Solana developers with a strong
understanding of blockchain security principles. All contracts should undergo thorough
testing and security audits before handling real funds on mainnet.

• 
• 


	GWIM Smart Contracts Technical Specification
	Overview
	1. GWIM Token Contract
	Contract Type
	Token Parameters
	Token Distribution
	Key Functions
	Initialize Token
	Mint Tokens
	Transfer Tokens

	Security Considerations

	2. Presale Contract
	Contract Type
	State Variables
	Key Functions
	Initialize Presale
	Start Presale
	Update SOL Price
	Calculate Token Price
	Purchase Tokens
	Advance Stage
	End Presale

	Presale Rules Implementation
	Dynamic Pricing Logic
	Purchase Limit Enforcement

	Security Considerations

	3. Staking Contract
	Contract Type
	State Variables
	Key Functions
	Initialize Staking
	Stake Tokens
	Calculate Rewards
	Claim Rewards
	Unstake Tokens

	Staking Rules Implementation
	APY Calculation
	Early Unstaking Penalty

	Security Considerations

	4. DAO Governance Contract
	Contract Type
	State Variables
	Key Functions
	Initialize DAO
	Create Proposal
	Cast Vote
	Calculate Voting Power
	Execute Proposal
	Cancel Proposal

	DAO Rules Implementation
	Voting Power Calculation
	Proposal Execution Logic

	Security Considerations

	Implementation Guidelines
	Development Framework
	Development Environment
	Testing Strategy
	Deployment Process
	Frontend Integration

	Conclusion


